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ABSTRACT 

We study spaces of "approximate solutions" to a given convolution equation. In 
particular we show how their quasianalyticity can be reduced to the study of a 
suitably constructed Cauchy problem for related spaces. We give a unicity 
theorem for this problem. 

1. In this paper we study some spaces of ultradifferentiable functions and we 

discuss their quasianalyticity. To this purpose, we act in the framework of the 

theory of analytically uniform spaces (AU-spaces in the sequel) which, after [1] 

and [5], seem particularly well suited for this study. 
Let ~A(L) be a (locally convex topological) vector space of C ~ functions on 

R", which are approximate solutions to a given convolution equation L * f -- 0, 
and let T _C R" be a linear subvariety. We say that g'A (L) is T-quasianalytic if 

there are no (nontrivial) functions f in ~A(L) which, on T, satisfy D~(L j * f )  = 0 

(the reader is referred to section 2 for precise notation and terminology). We 

show (Theorem 2.3) that it is possible to construct a convolutor /~ in n + 1 

variables, and a weight t# such that the T-quasianalyticity of ~A (L) reduces to 

the uniqueness of the Cauchy problem for the convolutor/~ in the space ~'(~b) of 

C ~ functions satisfying certain growth conditions induced by ~b. Finally, in 

Theorem 3.2, we give explicit conditions on the pair (#,~b), which make ~(t~) 

into a uniqueness space for the Cauchy problem for /~ 

2. Let ~ = g~(R") be the space of infinitely differentiable functions equipped 

with the usual topology of the uniform convergence on the compact subsets of 
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R n, and let ~ denote its subspace consisting of all functions with compact 

support. We recall the definition of the Beurling and the Roumieu ultradifferen- 

tiable functions: let A = {aj}7--o be a convex sequence of positive numbers, i.e. 

at = exp(g(j)), where g :R÷--->R ÷ is a convex function such that g ( r ) / r - - - > ~  when 

r-->~, and let A(z)=X/Iz[J /a / .  

DEVINITION 2.1. The space ~A,R of Roumieu ultradifferentiable functions is 

the space of all infinitely differentiable functions f on R n such that, on every 

compact set, for every e > 0 and for every a, there is a positive constant C, 

depending on e, a, [ and on the compact set, such that 

I D°f(x)l <= cel~lat~l .  

As usual, for a = ( a l  . . . . .  an) a multiindex of nonnegative integers, D = 

(cg/Oxl . . . . .  cg/Ox.) ,  D e = (d", /cgx~' ,  . . . .  c9~'"/c9x~."), I a I = a ,  + . . .  + a , .  

REMARK 2.1. In Definition 2.1, one can replace "for every e > 0" by "there 

exists e > 0". This leads to nontrivial changes in the theory, especially if ~ is 

allowed to depend on the compact set (see [5]). On the other hand, if e only 

depends on f, we have the so-called Beurling spaces g'A,~ which can be treated in 

the same way as the Roumieu spaces (we will not consider these spaces, in the 

sequel, but everything carries over to them with no essential changes: for this 

reason we will eliminate the subscripts R and B); the reader interested in the 

theory of these spaces is referred to [4] and [9]. 

In [1] and in [5], a more complicated class of function spaces is considered, the 
spaces ~A ( L ; R  n) = ~A (L), in connection with some questions of quasianalytic- 

ity. Let O be a linear constant coefficient differential operator: ~A(O) is the 

space of those infinitely differentiable functions f which, together with their 

derivatives, satisfy, for all e > 0 and for some C > 0, 

I QJf(x)l CE%jjl, 

uniformly on the compact sets of R ". 

More generally, one can replace the differential operator Q by a convolution 

operator. For f in ~ and L in ~' ,  the dual space of ~, i.e. the space of all 

distributions with compact support, one defines the convolution product L * f by 

using the duality brackets ( , ) in the following way: 

(L * f)(x) = (L,f(t - x)), 

where L acts on f(t-x) considered as a function of t only. Suppose now 
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L = (LI ..... L,) E (~') ':  define L, * Lk by 

(L, * L~,f) = (L.Lk *f), 

and, if j = (/, ..... j,) is a multiindex, 

L j = L~'*...*L~'. 

DEFINITION 2.2. For A, L as above, ~A(L) is the space of all infinitely 

differentiable functions on R" such that for all e > 0, and for all a, there exists 

C = C(f, e ,a )  such that for all x in R" and all j it is 

tD a ( L j * f ) (x  )l ~ Cel~l arjj. 
REMARK 2.2. ~A(L) is a Roumieu space; the corresponding Beurling space 

can be obtained as in Remark 2.1. 

REMARK 2.3. For L =(O/Ox~,...,O/Ox,), the space ~'A(L) reduces to the 

space ~A described earlier: notice that the derivatives D ° have only been 

introduced with the purpose of making g'A (L) a Frechet-Montel space, in the 

natural way induced by the seminorms 

Ill I1~,., = ~ (supl D" (L' *f)(x)l)lali,e I'l 
I 

We will call ~'A (L) the space of ultradifferentiable functions of class (A, L). 

DEFINITION 2.3. Denote by ~ , ( L )  the strong dual of ~A(L); we call its 

elements ultradistributions of class (A,L). 

As pointed out in [1], both the spaces ~A and ~A(L) are AU-spaces, whose 

AU-structure is given as follows: 

THEOREM 2.1. The space ~ ~(L ), of the Fourier transforms of the elements of 
~,~(L), consists of all entire functions F(z )  in C" which satisfy, for some a, b, 

c >0 ,  

I F(z)l--< aX(c£(z))(1 + l z  I)bexp(b Ilmz I) 

where l~(z) = £1(z) . . . . .  f_.,(z). 

REMARK 2.4. Later on, in this section, we will sketch a proof of this result 

which is different from the original one given in [1]. 

We now provide a short description of a number of related spaces which we 

will use in the sequel. Let ~b be a continuous, positive, increasing, nonconstant 
convex function on R". ~(~b) is the reflexive Frechet space of all infinitely 
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differentiable functions on R" such that, for all a, for all e > 0, there exists a 

constant C such that 

I D' f (x) l  <-- Ce mEx) 

To prove an analog of Theorem 2.1, one must show that the space g~'(4)) consists 
of entire functions; this can be achieved by requiring (see [7]) that 4) dominates 

all linear functions: such a function 4) will be called "admissible". In these 

hypotheses, if one denotes by 4)* the Legendre transform of 4), i.e. 

4)*(y) = max(x • y - 4)(x)), 

it is possible to show that 4)* is still continuous and convex, and ~'(4)) consists of 

all entire functions F for which there exist constants A , a , b  > 0, such that 

I F(z) l  =< A(1 + Iz ])° exp(4)*(blm z)). 

This result can now be used to show that E(4)) is an AU-space,  whenever 4) is 

admissible. 

Further extensions can be obtained considering that ~(4)) is a space of 
infinitely ditterentiable functions which satisfy certain growth conditions with 

respect to a given convex function 4), or, equivalently, with respect to a family qb 

of convex functions, where O={4)(ex):e >0}. Hence it is spontaneous to 

extend the previous example to the case in which ~ is a family of continuous, 

positive, increasing, nonconstant convex functions 4). In this case, under suitable 

conditions for the family qb (see [10]), a new space ~ ( ~ )  can be defined via the 

seminorms 

II f I1~., = sup {I O"f(x)l exp( - 4) (x))}, 

and it is now immediate to obtain a description for the space ~'(qb). 

One can finally consider the more general spaces ~A (L ;~) ,  naturally defined 
by the seminorms 

Ilfll . .  = al, I EI,I-1 sup I D"(L'  * / ) (x) l  e x p ( -  4)(x)). 
/ x 

We are now ready to attack the problems of quasianalyticity connected with 

the spaces which we have introduced. Let 5¢ be any of the above-defined spaces 

of infinitely differentiable functions (i.e. 9° could be ~, ~(4)), ~A, ~A(L), 

~A (L;4)), etc.). We say that 5¢ is nonquasianalytic if there exists a nontrivial 

function f in 5¢ of compact support, or, equivalently, if there exists a nontrivial 
function f in ~¢, all of whose derivatives vanish at the origin. 
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If 5e = ~A, a necessary and sufficient condition for it to be quasianalytic is 

given by the well-known theorem of Denjoy-Carleman,  [8]: 

THEOREM 2.2. The space ~a (R n) is quasianalytic if, and only if, 

E ajllj--_ + ~ .  

In [5], the space ~A (L) is considered, for L a partial differential operator with 

constant coefficients, and a theorem is given to find out if it is possible, for 

f E ~'A (L), tO vanish (together with all its derivatives) on a noncharacteristic T 

of L. The reason for the consideration of a noncharacteristic T is the well-known 

fact that, for the characteristic case, one has to introduce certain growth 
conditions on the function f in order to obtain some result (this corresponds to 

saying that uniqueness for the Cauchy problem holds in g'A(L;~b), but not 

necessarily in ~ga (L), for the characteristic case). The noncharacteristic case has 

been studied, for convolution equations, in [6], and an analog of the famous 

Holmgren's  uniqueness theorem has been obtained. It is our purpose to show 
how to reduce this problem, for a general convolutor L in g"(Rn), to the Cauchy 

problem studied in [1], [2]. 
Let us consider L in ~"(R~), and let T be a linear subvariety of R ". 

DEFXNITION 2.4. The space ~A(L) is called T-quasianalytic if 

{f in ~A (L):  D ~ (L i * f )  = 0 on T for all a,j} = {0}. 

We want to give conditions on the pair (L,T) which ensure the T- 
quasianalyticity of the space ~'A (L). For this purpose, consider the immersion of 
R" into R n+', whose variable w we split as w = (x, y), for x in R n, and y in R. Let 

~b be an admissible function on R: denote by ~(d~) the space of all functions 

g(x ,y)  in ~(R n+') whose growth, along the y-coordinate, is bounded by 

exp(~b(ey)). It is easy to see that ~(~b) is an AU-space. 

Let now/~ be an element of ~"(Rn÷'), and S, C $2 two linear subvarieties of 
Rn+l • 

DEFInITIOr~ 2.5. We say that ~(~b) is a uniqueness space for/z with respect to 

(St, $2) if the vanishing of a solution f of/z * f = 0 with all its S2-derivatives on S, 

implies that f = 0  on $2. If S, = S, $2= R n÷', we simply say that ~ ( 6 )  is a 

uniqueness space for the Cauchy problem for /z on S. 

To connect Definitions 2.4 and 2.5, construct a function ~b on R by 

(1) exp(6(y)) = Y, a~l y I'm*'JT((m + 1)j)!. 
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We make the following requirement on A :  

(i) there are C, m > 0  such that 

(2) aj <= C(mj)!, 

(ii) the function q~ defined by (1) is admissible, and makes 
~(,b) into a LAU-space (see [5]), 

(iii) there is D > 0 such that )t(z)-_ < exp(DIz I). 
Finally, define the convolutor tt in ~'(R "+') by 

/z * g = ( -  1)"+' a m+lg/c~y"+'- L * g. 

We can now prove the 

THEOREM 2.3. Let L E ~'(R") and T = {x E R" : x, = 0}. I[ ~((b) is a unique- 
ness space for the Cauchy problem for tz with respect to (T,y = 0), then *a (L ) is 
T-quasianalytic. 

PROOF. For m satisfying (2), the series 

(3) ~ L j *[(x)ytm+l)i/((m + 1)j)!, x E R", y E R, 
/ 

converges to a function g(x ,y)E ~g in the topology of g' itself. Moreover g 
satisfies the following "heat-like" equation 

(4) L * g = ( -  1)'+'O"+'g/~gy "÷', 

in ~(R"+'). For x in a compact set, one immediately estimates the growth of g by 

[g(x, Y)I =< Y~ nelital,II Y I''+'i/(( m + 1)j)[ = He *''''''+''''. 

The hypotheses which we have made on A show that g belongs to ~(~b), and 
that this is a LAU-space. In such a situation, it is then possible to apply the 
fundamental principle for "heat-like" convolution equations proved in Ill  to the 
equation (4), thus obtaining a representation of g as 

(5) g(x, y) = fv Oe'C'~+'°dv(z' O/k(z, ¢), 

where (z,~') are the dual variables, in C "+1, of (x,y), (V,a)  is the multiplicity 
variety defined (in the (z,~')-space) by the equation 

" ÷ 1  =0, 

and where k(z,~) belongs to the AU-structure defining ~(~b). 
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In particular, (3) and (5) yield 

(6) f(x) = g(x,O) = fv ae"Zdv(z' ~)/k(z, ~). 

With a standard argument (see [5], theorems 5.26 and 13.1), one deduces from 

(6) and from (iii) that f belongs to $A(L) if and only if g belongs to 
(Ker/z) fq ~(~b), for ~ defined as above. This concludes the proof. [] 

REMARK 2.5. This uniqueness result shows that SA(L) is T-quasianalytic if 
~ (~)  is "quasianalytic" with respect to the convolutor tz, thus shifting the 

problem to the study of the properties of ~(~b). 

REMARK 2.6. Notice that, even if T is noncharacteristic for L, T p,ay well be 
characteristic for/~, hence, even in the noncharacteristic case, we have to deal 
with some kind of growth conditions. 

REMARK 2.7. The proof just given can be used to give a new proof of 

Theorem 2.1. Indeed, once the correspondence between SA(L) and the space 
(Ker/z) N ~ (~b) is proved, one can use the fundamental principle for convolution 

equations (we will suppose, for this purpose, that /z be slowly decreasing) to 

show that (Ker/z) N ~(~b) is still (roughly speaking) an AU-space. From this, it is 

not too difficult to exhibit a specific AU-structure for SA(L). 

EXAMPLE 2.1. If n = 1, L = d/dx and T =  {0}, then Theorem 2.3 gives a 
classical condition for the quasianalyticity of the space SA. In this case, in fact,/~ 
is essentially the heat operator, for which a well-known uniqueness result has 

been proved by Tficklind, [11], where, for the first time, appears the idea of 
considering growth conditions associated to a given differential equation. 

EXAMPLE 2.2. If L is a differential operator, then Theorem 2.2 particularizes 

to theorem 13.3 of [5]. 

3. As a natural consequence of the results described in the previous section, 
one is led to the study of the uniqueness problems in the spaces ~(~)  for 4~ a 

suitable function. In this section we will give conditions on the pair (/~, ~)  which 

make ~(~)  a uniqueness space for the convolutor/~. It is well known that, for D 

a partial differential operator, any f in ~ with Df = 0 is determined by its 

Cauchy data on any noncharacteristic hypersurface, say t -- 0. In [6] this result is 

extended to convolution equations, introducing a new definition of noncharac- 

teristic vector, which yields 
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THEOREM 3.1. [6] Let I~ E ~'(R")  and suppose {x, = 0} be noncharacteristic for 
it. Then every [ in ~(R")  with ! ~ . 1 = 0  and s u p p ( f ) C { x E R " : x l < 0 }  is 
identically zero in R". 

Suppose now we look for a result similar to Theorem 3.1 for the space ~ ( 6 )  
(from now on we will write ~(4)) for ~(th)) when T is not necessarily 

noncharacteristic for /~. Notice that, for our purposes, a result concerning the 

most general/~ in ~ ' (R "+') is not necessary. In fact, because of the construction 

developed in the proof of Theorem 2.3, it will be sufficient to study a convolutor 

of the form 

(7) ~ *[ = Om+~[/Oy " ÷ ' -  L *f, 

for [ in ~e(R"+~) and L in ~'(R"); this restriction, however, does not seem to be 

necessary, as we now have a Fundamental Principle for more general convolu- 

tion equations, [3]. 

Let us first explain the ideas behind the uniqueness result which we have in 

mind (these ideas are due to Ehrenpreis, [5], and, suitably modified, have also 

been utilized by Berenstein and Dostal in [1]). For t a real parameter (we can 

actually take 0 < t _-< 1), we look for a region A in C "+' (containing the variety of 

the zeroes o f /2 )  and a class ~ of functions H(t,w), w E C  "+~, such that, for a 

given quasianalytic sequence B = (bi): 

(a) H(t, w) is, for t fixed, analytic in w and, for w fixed, belongs to ~8. 

(b) For 6 any derivative in t, 6H(0, w) is a finite sum of terms, each of which is 

a polynomial in s, for w = (z,s), z E C "  and s E C ,  multiplied by an element of 

(c) The set {H(1, w ) : H E  ~}  is total in ~?'(¢b)(T). 

(d) For any k in an AU-structure for ~ (~) ,  the functions H(t, w) /k(w)  are 
uniformly bounded in ~B for w in A. 

(e) For any k in an AU-structure for ~(~b), and any c > 0 ,  it is 

sup[ O~/OFH(t, w )[/c IJl+, bljlk (w)exp([ s I) < + oo. 

Once we have constructed such a family ~,  the proof of lemma 9.27 of [5] can be 

followed to establish: 

LEMMA 3.1. I[ a family Y( as above exists, then ~(dp) is a uniqueness space[or 
the Cauchy problem for l~ on T. 

REMARK 3.1. In the proof of lemma 9.27, Ehrenpreis uses his Fundamental 

Principle for partial differential equations. This is the only point in which we 
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differ from his proof, since we will now use the extended version of [1] of the 

Fundamental Principle for convolution equations. 

Let us now consider a convolutor defined as in (7), and suppose that L in 

'(R" ) satisfies 

[£ (z ) [ '~ '+ ' _  -< A + B [Re z [c +p ( [ im  z [), 

where A, B, C > 0 and p is a positive, continuous, strictly increasing function 

such that, for any 6 > 0 ,  there are ~ ' , 6 " > 0  satisfying 

@(u) <~ p(~'u) + ~". 

Notice that the inverse function p_~(u) of p is well defined. Let us decompose 

Oh(x, y) as 

,/,(x, y)= ~,(x)+ ,/,2(y), 

with 4~2(y) = 0 for l Y [ < 1 and 4':(Y) = + ~ for ]y [ -> 1, and consider a function 

~b(x) such that $*([x [)= ~,(x). Furthermore, we take $ convex, positive, and 

such that 

(8) h (u):  = exp(~(p_,(u)) 

is a positive strictly increasing function of u _-> 0, such that log h (u)  is a convex 

function of log u, with lim~uJ/A(u)= 0. In particular we will assume we can 
construct (see [1], [5]) a convex sequence M = {mj} such that, for some positive 

D, 

AM(u/2)<DA(u) and AM(u)_--< exp([ u [). 

Finally we will suppose that, for some a ~> C, 

(9) [u [° = O(6(u)). 

We quote, from [1], the following 

LEMMA 3.2. Let qJ(u ) be an even function (positive and convex) which satisfies 
(9). Then the set of all entire functions F such that 

(10) F(z) = O ( e x p ( -  C [ R e  z I a + 6 (d  Im z))) 

is dense in ~'(~). 

We can now state our final result: 

THEOREM 3.2. Let T CR "+~ be defined by T = {y = 0}; then, with the notation 
as above, a sufficient condition for ~ (dp ) to be a uniqueness space for the Cauchy 
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problem/:or tz on T is that 

f)" (11) O(P ,(u))u ~-du = + ~c. 

PROOF. Because of Lemma 3.1, we must construct a region A in C °*~, 

containing the variety/2 = 0, and a class N of functions such that, with respect to 

the quasianalytic class M constructed above (M is quasianalytic because of (11)), 

properties (a) through (e) are satisfied. Define ~ to be the family of all functions 

H( t ,w ) ,  for w in C "+', t E [0,1], given by 

H(t,  w) = e'r~F,(z,) . . . . .  F , ( z , ) ,  

where o- ~ R, s C C and F~ satisfy (10). It is immediate to observe that properties 

(a), (b), (c) are satisfied by )~. Property (d) holds when A is 

A = {w = (z , s ) : ]s  I <-__ [£(z)]}, 

and this is a consequence of our assumptions on p. 

Our proof is then complete if we prove (e). Observe that, for or = 1 fixed, 

sup] O'/OyiH(y, w)l/ml, lk (z)exp (] s I) =< sup] s l'[ F(z) l /ml ,pk(z  )exp([ s I). 

Because of (9) this last expression is majored by 

(supl F ( z ) l / k ( z ) ) ( s u p l  s I'/mp,,A (s))'<-_ supl F t z ) l / k ( z )  < + oc, 

the last inequality being a consequence of our choice of the functions F. The 

proof of Theorem 3.2 is now complete. [] 

REMARK 3.2. In Theorem 3.2, the subvariety T is supposed to have codimen- 

sion 1. This restriction, however, is not at all necessary as one can suitably 

modify the previous results to allow (similarly to what Ehrenpreis did for partial 

differential equations in [5]) one to deal with higher codimension varieties and 

with the notion of (S,, $2) uniqueness. So, if codim T = r > 1, the region A which 

appears in the proofs of the results above must be taken differently. In particular 

one sees that, in proving properties (d) and (e), s and z now have dimensions r 

and n + l - r ,  and 

A = {w = (z,s):lsl~/'+'<= A + BIRe z I c +p ( l lm  z I)}. 
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